
Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 1

runlinc Project 13 AI4:

Machine Learning Demo (E32W Version)

Contents
Introduction ... 1

Part A: Design the Circuit on runlinc ... 3

Part B: Build the Circuit .. 4

Part C: Program the Circuit .. 6

Part D: Run the Application .. 8

Appendix ... 9

Introduction

Aim

This project will demonstrate machine learning in predicting the next light that will be

clicked by the user.

Background

To make machine predicting like any intelligent human being, this machine needs to be

trained or to be imparted knowledge that allows it to think like a human being. The goal of

artificial intelligence (AI) as a science is to make machines do things that would require

intelligence if they had been done by humans.

There are numerous ways to make a machine think more like a human. The most popular

way is the Neural network. The neural network is based on the system of human biological

neural network (human brain). The brain consists of a densely interconnected set of nerve

cells, or basic information-processing units, called neurons with the connections, synapses

between them. A neuron consists of a cell body, soma, several fibres called dendrites, and

a single long fibre called an axon.

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 2

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

Figure 1: Biological neural network

For the neural network in a machine, they have the same structure but instead of using view

biologically, we use blocks, lines, numbers, mathematically viewing on those units.

Figure 2: Neural network representation between biological and artificial

Runlinc Background

Runlinc is a web page inside a Wi-Fi chip. The programming is done inside the browsers

compare to programming inside a chip. The runlinc web page inside the Wi-Fi chip will

command the microchips to do sensing, control, data logging Internet of Things (IoT). It can

predict and command.

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 3

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

Part A: Design the Circuit on runlinc

Note: refer to runlinc Wi-Fi setup guide document to connect to runlinc

For our case, our neural network looks like this: (For more information on this diagram, read

the appendix)

Figure 3: Block diagram of Red-or-Green neural network

Figure 4: On runlinc control page, assign “RedLED” in D5, and “GreenLED” in D18

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 4

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

For D5, it’ll be a DIGITAL_OUT with the variable name of “RedLED”.
For D18, it’ll be a DIGITAL_OUT with the variable name of “GreenLED”.
For D19, it’ll be a DIGITAL_OUT and being used as a negative pin so no name needed.

Part B: Build the Circuit

Use the STEMSEL E32 board to connect the hardware. For this project we are using both the
left and right I/O ports, with negative port (-ve) on the outer side, positive port (+ve) on the
middle and signal port (s) on the inner side (as shown below).

Wiring Instructions

Figure 5: Negative, Positive and Signal port on the E32 board

Plug in one LED to io19 on the E32W board, with negative pin into io19, green pin into io18 and red
pin into io5.

Note: The LEDs in different kits are different, so their style and the signal pin
sequence might change.

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 5

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

Figure 6: I/O parts with negative and signal pins indicated

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 6

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

<div>
<h1>Red or Green</h1>
<button style="background-color: rgb(255, 103, 103)"
onclick="play('RedLED')">RedLED</button>
<button style="background-color: rgb(118, 255, 118)"
onclick="play('GreenLED')">GreenLED</button>
<button onclick="play('default')">Reset</button>
</div>

<laber>Sequence: </laber>
<output id="seq"> </output>

<laber>Predict next light will be </laber>
<output id="predict"> </output>

Figure 6: top view of E32W board

Part C: Program the Circuit

HTML:

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 7

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

JavaScript:

The JavaScript code here builds a main function that will predict your next press.
It create an array called sequence, and if it’s length is over 7 it will remove the 1st element of the
array. And if the input is “RedLED”, it will add 1 to the array, and calculate the prediction using
calculation function in the following code. If the input is “GreenLED”, it will add 0 to the array and
calculate the prediction using calculation function. Then it will set default value of the program,
which is weight = 0, sequence = [], “seq” on webpage is “ “, predict on page is “”, and red and
green LEDs are turned off.

var n = 8;
var sequence = [];
var count = 0;

function play(light) {
if (sequence.length > 7) { sequence.shift();}
switch (light) {
case 'RedLED':
sequence.push("1");
calculation();
break;
case 'GreenLED':
sequence.push("0");
calculation();
break;
default:
weight = 0;
sequence = [];
document.getElementById("seq").innerHTML = " ";
document.getElementById("predict").innerHTML = " ";
turnOff(RedLED);
turnOff(GreenLED);
break;
 }
}

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 8

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

The calculation function calculates the prediction value according to the input from the user. If the
user clicks on the red LED, the function will write 1 to an array; if the user clicks on the green LED,

function calculation() {
 var input = [];
 var weightEach = [];
 var weight = 0;
 var SUM = 0; var DEC = 0;
 for (var i = 0; i < sequence.length; i++) { if (sequence[i] == 0) {
 input[i] = 0.1;
 }
 if (sequence[i] == 1) {
 input[i] = 1; count++;
 }
 SUM = SUM + sequence[i] * Math.pow(10, 7 - i);
 DEC = SUM.toString(10);
 weightEach[i] = (input[i] / ((1 / DEC) + n));
 weight += weightEach[i];
 }
 document.getElementById("seq").innerHTML = sequence.join(" ");
 prediction(weight);
}

function prediction(pred) {
if (sequence.length < 7) { document.getElementById("predict").innerHTML = " ";
turnOff(RedLED);
turnOff(GreenLED);
} else {
if (pred >= 0.5499999931763907) {
document.getElementById("predict").innerHTML = "RedLED";
turnOn(RedLED);
turnOff(GreenLED);
}
if (pred <= 0.5374999333107895) {
document.getElementById("predict").innerHTML = "GreenLED";
turnOff(RedLED);
turnOn(GreenLED);
}
if (pred == 0.6624999923295869) {
document.getElementById("predict").innerHTML = "GreenLED";
turnOff(RedLED);
turnOn(GreenLED);
}
if (pred == 0.41249951870961277) {
document.getElementById("predict").innerHTML = "RedLED";
turnOn(RedLED);
turnOff(GreenLED);
}
}
}

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 9

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

the function will add 0.1 to the array. Then, it will calculate the final value for the prediction with
some calculations, and then, in the prediction function, if the final calculated value is within different
certain range, the output will be different.

Part D: Run the Application

When you finish implementing the code, remember to send the code to the board. Then you

can run the machine learning demo at the IP address. It should have the following page:

Figure 7: Webpage

Then you can play around the sequence. You’ll find that it’ll be slowly able to predict more

accurately how you will plan your next sequence. But of course, it won’t be highly accurate.

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 10

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

Appendix

The general architecture of an artificial neural network:

Figure A1: Architecture of an artificial neural network

To put it into an analogy between biological and artificial neural networks, we have:

• Some as Neuron

• Dendrite as Input

• Axon as Output

• Synapse as Weight

And to simplify artificial neural network as a computing element, we have

Figure A2: Diagram of a neuron

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 11

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

Before designing our block diagram, figure 3, we need to know our situations:

• 2 inputs with individual weight

• Total of 256 combinations in our sequence, from 00000000 to 11111111 (8 bits)

• Each of the combinations needs to have different weights

• Only record 8 bits

Let’s start with 2 inputs with 2 bits. The possible combination of 2 bits, 0 and 1 are:

Decimal A B

0 0 0

1 0 1

2 1 0

3 1 1

Therefore, in the neural network:

Table 1: Possible combination of 2 bits

Figure A3: Neural network for 2 bits

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 12

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

Same method with 4 bits and 8 bits:

Figure A4: Neural network for 4 bits

Figure A5: Neural network for 8 bits

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 13

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

Here comes the trick, we could split 8 bits into 4 parts, and it will make things easier. Example:

 AB (first part) CD (second
part)

EF (third part) FG (forth part)

00000000

00

00

00

00

00000001 01

00000010 10

00000011 11

00000100
01

00

00000101 01

00000110 10

.

.

.
11111111 11 11 11 11

With this split, we could see each part are the combination of 2 bits, and we can group them,

and assign a number, k for the order of part to let the machine know which part goes first

towards last part. Therefore:

Figure A6: 8 bits into 4 parts block diagram

Copyright © 2025 eLabtronics. All Rights Reserved

P a g e | 14

runlinc Project 13 AI4: Machine Learning Demo (E32W Version)

Furthermore, we can split them from 4 to 2 parts, that means k count from 0 to 7.

 A B C D E F G H

00000000 0 0 0 0 0 0 0 0

00000001 0 0 0 0 0 0 0 1

00000010 0 0 0 0 0 0 1 0

00000011 0 0 0 0 0 0 1 1

00000100 0 0 0 0 0 1 0 0

00000101 0 0 0 0 0 1 0 1

00000110 0 0 0 0 0 1 1 0

.

11111111 1 1 1 1 1 1 1 1

Finally, group them into a block, change the computer to control, then add a user:

Figure A7: Block diagram of Red-or-Green neural network

